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COMPRESSION SHOCKS IN TWC-DIMENSIONAIIGAS FLOWS*

By A. Busemsmn

The following arguments on the compression shocks in gas flow start
with a simplified representation of the results of the study made by
Th. Meyer as published in the Forschungsheft 62 of the VDI, supplemented
by several amplifications for the application.

In the treatment of compression shocks, the equation of energy,
the equation of continuity, the momentwn equation, the equation of state
of the particular gas, as well as the condition Of the second law of
thermodynamics that no decrease of entropy is possible in an isolated
system, must be taken into consideration. The result is that, in those
cases where the sudden change of state according to the second law of
thermcd.ynamicsis possible, there always oqcurs a compression of the gas
which is uniquely determined by the other conditions.

First, it will be shown that the resulting relations can be easily
expressed if the thermodynamic and the pure dynamic relations have been
previously trsmformed so that pure thermodxcs, as we~ as pure
dynamics, can be expressed simultaneously in one diagr~. Since the
static pressure p itself represents a state quantity as well as a dynamic
quantity, one axis of the diagram may represent a ~is. l&om the equation “
of energy for steady flow from a tank follows – the heat conduction being
disregarded – the conventional relation thqt the kinetic energy of the

unit mass $2 (w = velocity) is equal to the difference of the heat

content of the tank i. and the momentary heat content i. Hence, when

a w-axis is chosen as the other axis, the lines w = Constant correspond
to definite heat contents i and the diagram can be used as a distorted
p,i diagram exactly like any other state diagram utilizing two state–
quantities as axes. The following general relations in this diagram can
be easily proved for adiabatic flow (fig. 1). For constant entropy, the
negative differential quotient +ip/dw represents the rate of flow pw

(p = gas ~’ensity),as obtained from Bernoulli.’sequation: ~ = >W2.
o-

The S1OKH of the line of constant entro~ accordingly represents for each
point the rate of flow, that is, the reciprocal value of the surface
necessary for the discharge of the unit mass. Tt immediately follows
that the tanrent to the entropy line on the p-axis cuts the momentum P + p~.

*“Verdichtungsst6sse in ebenen Gasstr5mungen.” Vortr5ge aus dem
Gebiete der Aerodynsmik und verwandter Gebiete, Aachen 1929, pp. 162–169.
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l?mm these simple relations in the P,W diagram, the statement is
readily proved that normal compression shwks or compression shocks.~n
one-dimensional flow are possible only between those points which have a
common tangent on their entropy lines. Such states fulfill the equation
of state of the particular gas, because they are located on its p,i dia-
gram; they comply with the egua.tionof energy, because the equation is
used to identify the w+xis; they satisfy continuity, because their entropy
lines have the sam directicm; and they have identical mcmmtum, because
the tangents ?mve equal intercepts on the -s (fig. 2).

The second law of themmdynmics ccmtributes the fact that the later
one be the state of greater entropy. Since the cross section necessary
for the unit mass increases with the speed at supersonic velocity, and
hence the rate of flow decreases, the upward concam part of the entropy
lines signifies suIx&sonic velocity, the upwardly Convex ~ subsonic
velocity. Normal compression shocks have, therefore, supersonic speed
as initial.state and subsonic speed as terminal state.

Extensi6n of the argumnts to include tw~nsltmal flow simply
involves the substitution of the W+S for a U,V or velocity plane,
against which the pressures p

a
are plotted, the surface of equal entropy

being Obtained as surface of rotation of the entropy lines of the P,w dia-
- (f’ig.3). In isenh?opic flow, all states are situated on one single .
surface of constant entropy. As stated elsewhere (reference 1), the gas
flow is unusually sensitfve in cross sections in which a relatively
maximum rate of flow exists. In one+iimensional flow, the absolute
maximum rate of flow is through cross sections in which the flow velocity
equals the sonic velocity. In the p,w diagram, they are represented by
the point of inflexion of the entropy lines as the Nint of pa.ximumS1OE
of the entropy line; In twtiimensional flow, all such cross sections exe
normal to the directions of the curves of the main tangents on the saddle-
like curved region of the entropy surface. Then sensitive cross sections
with the relatively mximum rate of flow appesr as steady sound waves in
twtiimensional su~rsonic flow, when minor disturlmnces (such as
roughening with a file) are applied at the boundary walls of the flow
(fig.~4).

The curves of the main tangents projected on the plane of the velocity
then give a network of lines by means of which the supersonic flow in the
prescribed channels csnbe pursued (fig. 5).

If the streamlines In a supersonic flow are deflected at a finite
angle toward the flow, say, by the boundary wall, for exemple, no stagnation
point need occur at this point like in the subsonic flow. The supersonic
flow can rather achieve the deflection by an oblique compression shock
(fig. 6), if the ahgle of deflection does not exceeds certain amount,

+

But this is accompanied by an entropy ri~e without which momentum, energy,
and continuity theorem cannot be fulfilled. The terminal states after a &

■
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‘ compression shock are therefore no longer located on the surface of constant
entropy, %ut within the pressure do~ of constant initial entropy by reason
of the entropy rise. On assuming the direction of the compression shock,
or normal to it, the direction of the velocity variation, as given, it
results in a p,w diagram above the particular straight line, in which
the terminal state c-be identified as the normal compression shock
exactly like in figure 2 (fig. 7).

For a given velocity wl all terminal states after compression shocks

lie on the -@ngetitial-plane at the pressure dome in point ~, xl (fig. 8).

In the tangential plane, the terminal states ap~ar again as points of
relatively maximum entropy on all rays thrOUgh P15 Xl. ~ the projection

on the velocity plane, the line connecting sll terminal states + possible

from Xl is termed shock polar. The shock polars give the possible

deflections as well as the position of the shock surface perpendicular to
the velocity difference Xl – ~ for each deflection. ngure 9 rewesents

a shock polar diagrsm for air with k = l.~~, showing the shock polars from
different starting points on the u+usis, along with the curves of constant
entropy of the terminsl state and indicated

By multiplication with Pso/po it affords,

the other surfaces of constant entropy from
adiabatic surface.

With these diagrams, it is possible to

by the pressure ratio Pf(JPO ●

for perfect gases, the height of .

the heights of the initial

follow two-dimensional flows
even in cases where compression shocks occur. For illustration, figure 10
shows a flat plate with a given singleof attack and figure 11 shows
a symmetrical flow past a biconvex airfoil, and in ffgure 12, a schlieren
record of real flow past such an airfoil. This exsmple demonstrates that
su~rsonic flows in which shocks OCCW, C= ~SO be treated graphic~ly
in close agreement with reality. Minor deflections may be treated by
the methods of adiabatic flow.

Strong compression shocks present a certain difficulty if neighboring
stream filaments wss t~ough compression shocks of dissimilar”iptemity. Such
flows are no longer irrotational and can then be treated approximately by
the methods of potential flow only if the vortex strength is concentrated
in certain streamlines. Each strip between two such stream lines can then
be treated separately as potential flow and the bordering stream llnes
plotted in such a way that eqml pressure and equal velocity direction
appear in both adjacent strips. In the examples (figs. 10 and 11), the
departure from potential flow was regarded as disap~aringly small.
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Discussion

Mr. Burgers, Delft, asked whether it was possible to &aw a co-
clusion from the compression shocks about the wave resistance of bodies
at sumrsonic sp3eds.

Busemann: To compute the magnitude of wave resistance it is per-
missible for slender Wofiles to work with adiabatic compression shocks,
as given by Riemamn (reference 2). The result is then invariably a
positive pressure on the surfaces which push the flow aside, and negative
pressure on the surfaces which contribute room to the flow. From this
the wave resistance (reference 3) follows immediately. The question of
where the work of resistance in the gas remains can be answered from the
compression shocks, even for slender profiles. As figure 11 indicates, com-
pression shocks are obtained, the strength of which abates simultaneously
with the disap~ arance of the wave field with increasing distance from
the profile. By integration with respect to all stream filaments, it
can be proved that the heating of the gas on traversing the compression
shocks precisely represents the work of resistance. The resistance momentum
follows likewise as’mo??mrbumof the forward movement in the wake produced by
the shocks.

.

Translated %y J. Vanier
.

National Advisory Comnittee
for Aeronautics

REI!ERENCES

1. Prandtl, L., and Busemann, A.: l!%iherung~verfahrenzur zeichnerischen
Ermittlung Ton ebenen Strdmungen mit Uberschallgeschwindigkeit.
Honnegger, Stodola-Festschrift, Zfiich 1929, page 499.

2. Riemann -Weber: Partlelle Differentislgleichung, ~th Edition, 1912,
page 481.

3. Ackeret: Z. f. Flugtechnik u. Motorluftschiffahrt, 1925, pge 72.



NACA TM No. 1199

.

5

b

.

P,

T

o

Figure 1.- Relationsinthep,W diagram.
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Figure 2.- T?ormd compression shock intheP,w di~ram,

.

.

I

.

.



NACA TM NO, 1199

.

Figure 3.- p,u,vdiagram forplaneflowwithconstmt entropy.

.

.



.

.

.



NACA TM NO. 1199 9

Figure4.- Schlierenphotographofsteadysound waves.
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Figure 5.- Graphicalrepresentationofflowof figure
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Figure 6.- Compression shock atdeflectionby a finiteangle.
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Figure 7.- P ,U,Vdiagr~ with entropy ~se.
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Figure 8.- Shock polarinthetangentialplaneatthep dome.
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Figure 9.- Shock polardiagram ofair (k = 1.405). Shock polars,solidlines;
P.!/Pocues, broken ~nes.
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Figure 10.- Flow pasta flatplatewithangleofattack.

Figure 11.- Flow pasta biconvexprofile.



,

.
.

.

.



.

.

*

17

Figure 12.- Schlierenphotographofflowpasta biconvexprofile.
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